Type: \(\displaystyle C^{1}_3\) (Dynkin type computed to be: \(\displaystyle C^{1}_3\))
Simple basis: 3 vectors: (1, 2, 2, 1), (0, -1, 0, 0), (0, 0, -2, -1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_1
simple basis centralizer: 1 vectors: (0, 0, 0, 1)
Number of k-submodules of g: 6
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{1}}+2V_{\omega_{1}}+3V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, -1)(0, 0, 0, -1)g_{-4}-2\varepsilon_{4}
Module 21(0, 0, 0, 1)(0, 0, 0, 1)g_{4}2\varepsilon_{4}
Module 36(-1, -1, -1, -1)(1, 1, 1, 0)g_{8}
g_{-9}
g_{-7}
g_{3}
g_{6}
g_{-11}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 46(-1, -1, -1, 0)(1, 1, 1, 1)g_{11}
g_{-6}
g_{-3}
g_{7}
g_{9}
g_{-8}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 521(-2, -2, -2, -1)(2, 2, 2, 1)g_{16}
g_{1}
g_{-14}
g_{5}
g_{-12}
g_{13}
g_{-10}
g_{-2}
g_{15}
-h_{4}-2h_{3}
-h_{2}
h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-15}
g_{2}
g_{10}
g_{-13}
g_{12}
g_{-5}
g_{14}
g_{-1}
g_{-16}
2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{3}
-2\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
2\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
2\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
-2\varepsilon_{1}
Module 61(0, 0, 0, 0)(0, 0, 0, 0)h_{4}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 3
Heirs rejected due to not being maximally dominant: 1
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 1
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{2}_2
Potential Dynkin type extensions: C^{1}_3+A^{2}_1, C^{1}_3+A^{1}_1,